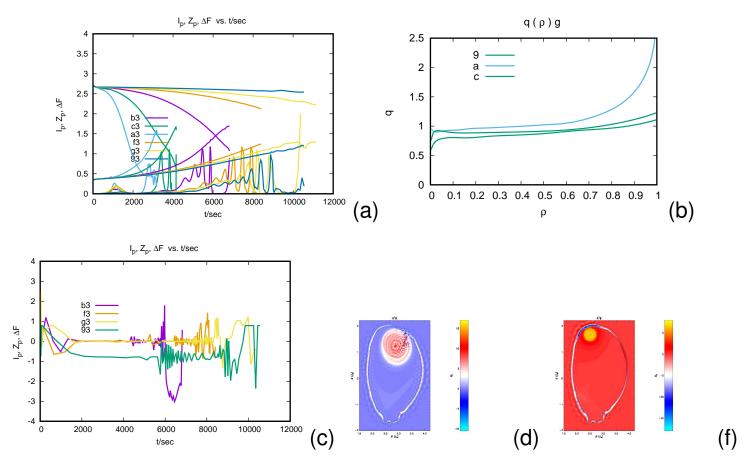
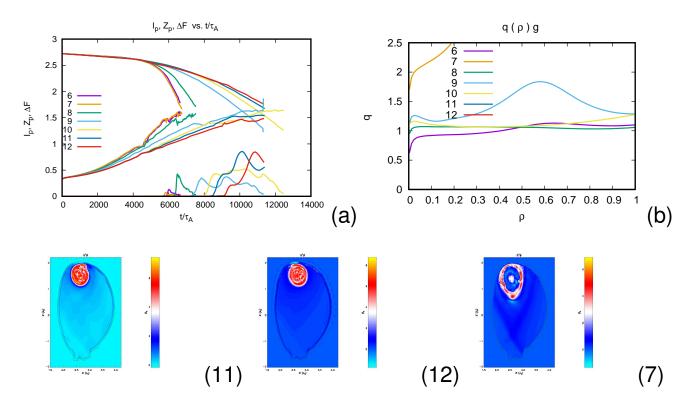


H. Strauss, 6-8-20 Wall force F_{wall} , au_{CQ} , au_{vde}


(a) Time history of current I, vertical displacement Z, and asymmetric wall force F_{wall} . (b) q value in cases in Fig. (a), after sideways force peaks. The q value relaxes to q=1 when the sideways force is large. (c) contours of j_{ϕ} at peak force, labelled (b),(f),(g) as in (a),(b) The evolution of the q profile depends on the evolution of Z. For cases a,g,f in Fig.(a) the VDE saturates at at $Z\approx 1.5$, without reaching the wall, while cases b,c reach the wall at $Z\approx 1.7$. For the former cases, $q\approx 1$, while in the latter cases, q>1.

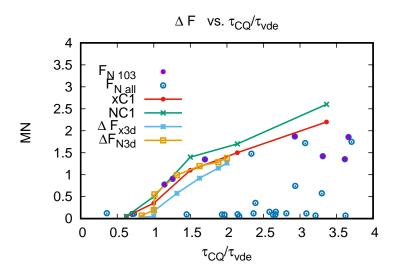
smaller η_{wall} - Dependence on q

Decreasing η_{wall} (1. e^{-4} the timescale is about 3 times longer. (a) in addition to the variables I, Z, F_{wall} , the magnetic energy B_{m1} is also plotted (with aritrary scaling). The n=1 magnetic enery correlates with F_{wall} . (b) q profiles at the end of the runs. When q=1 the force is large, when q>1 the force is small.


even smaller η_{wall} - Dependence on q

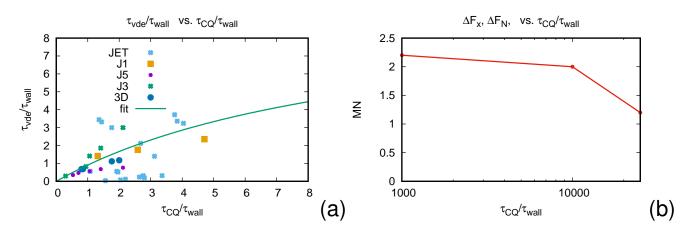
Decreasing η_{wall} , $(4.e^{-5})$ Now there are oscillations in the sideways force. Numerical noise or rotation? (c) $\tan^{-1}(F_y/F_x)(t)$. (a) Time history of current I, vertical displacement Z, and asymmetric wall force F_{wall} .

no external driving E field, vary η_{wall}


In these cases, the current decayed resistively, with the same η_{fac} . The current decay time is not constant, but depends on the wall resistivity. The sideways force seems to be smaller than when there is a driving electric field.

(a) Time history of current I, vertical displacement Z, and asymmetric wall force F_{wall} . (b) q profiles at end of runs.

Dependence of sideways wall force on au_{CQ}/ au_{vde}


The runs were initialized with a reconstruction of JET shot 71985. The current quench time τ_{CQ} was controlled by the applied electric field. The resistive wall time τ_{wall} was held fixed, while τ_{CQ} was varied in different runs. The value of the asymmetric or sideways force in the wall ΔF was calculated as a function of time. The peak value of ΔF was found as a function of τ_{CQ}/τ_{wall} . The JET data is obtained from the Noll approximation for the sideways force $\Delta F_x \approx \pi B \Delta(IZ)$, where Δ is the amplitude of the asymmetric perturbation.

JET task T17-13 on Wednesday 10th June

 ΔF_x as a function of τ_{CQ}/τ_{wall} , The Noll force in the simulations is ΔF_{NC1} , and the force in the wall is ΔF_{C11} . The dots are JET data for the Noll force, ΔF_N . Simulation data is given for M3D-C1 wall force labelled xC1 and Noll force NC1, as well as M3D runs ΔF_{x3d} and F_{N3d} [Strauss *et al.*PoP 2017, PoP 2020]

relation of au_{CQ} to au_{vde} , wall force F_{wall}

(a) relation of au_{CQ} to au_{vde} . Comparison of cases above and JET data. (b) Peak F_{wall} as a function of eta_{wall} . Is there a γau_{wall} effect? Data is preliminary.